Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 104, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431686

RESUMO

BACKGROUND: Mosquitoes belonging to the Anopheles gambiae sensu lato complex play a major role in malaria transmission across Africa. This study assessed the relative importance of members of An. gambiae s.l. in malaria transmission in two rural villages in the Republic of the Congo. METHODS: Adult mosquitoes were collected using electric aspirators from June to September 2022 in Djoumouna and Ntoula villages and were sorted by taxa based on their morphological features. Anopheles gambiae s.l. females were also molecularly identified. A TaqMan-based assay and a nested polymerase chain reaction (PCR) were performed to determine Plasmodium spp. in the mosquitoes. Entomological indexes were estimated, including man-biting rate, entomological inoculation rate (EIR), and diversity index. RESULTS: Among 176 mosquitoes collected, An. gambiae s.l. was predominant (85.8%), followed by Culex spp. (13.6%) and Aedes spp. (0.6%). Three members of the An. gambiae s.l. complex were collected in both villages, namely An. gambiae sensu stricto (74.3%), Anopheles coluzzii (22.9%) and Anopheles arabiensis (2.8%). Three Plasmodium species were detected in An. gambiae s.s. and An. coluzzii (Plasmodium falciparum, P. malariae and P. ovale), while only P. falciparum and P. malariae were found in An. arabiensis. In general, the Plasmodium infection rate was 35.1% (53/151) using the TaqMan-based assay, and nested PCR confirmed 77.4% (41/53) of those infections. The nightly EIR of An. gambiae s.l. was 0.125 infectious bites per person per night (ib/p/n) in Djoumouna and 0.08 ib/p/n in Ntoula. The EIR of An. gambiae s.s. in Djoumouna (0.11 ib/p/n) and Ntoula (0.04 ib/p/n) was higher than that of An. coluzzii (0.01 and 0.03 ib/p/n) and An. arabiensis (0.005 and 0.0 ib/p/n). CONCLUSIONS: This study provides baseline information on the dominant vectors and dynamics of malaria transmission in the rural areas of the Republic of the Congo during the dry season. In the two sampled villages, An. gambiae s.s. appears to play a predominant role in Plasmodium spp.


Assuntos
Anopheles , Malária Falciparum , Malária , Plasmodium , Humanos , Masculino , Animais , Feminino , Estações do Ano , Congo/epidemiologia , Mosquitos Vetores , Malária/epidemiologia , Plasmodium/genética
2.
Malar J ; 23(1): 21, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229020

RESUMO

BACKGROUND: Malaria remains a major public health problem in the Republic of Congo, with Plasmodium falciparum being the deadliest species of Plasmodium in humans. Vector transmission of malaria is poorly studied in the country and no previous report compared rural and urban data. This study aimed to determine the Anopheles fauna and the entomological indices of malaria transmission in the rural and urban areas in the south of Brazzaville, and beyond. METHODS: Indoor household mosquitoes capture using electric aspirator was performed in rural and urban areas during raining and dry seasons in 2021. The identification of Anopheles species was done using binocular magnifier and nested-PCR. TaqMan and nested-PCR were used to detect the Plasmodium species in the head/thorax and abdomens of Anopheles. Some entomological indices including the sporozoite infection rate, the entomological inoculation rate and the man biting rate were estimated. RESULTS: A total of 699 Anopheles mosquitoes were collected: Anopheles gambiae sensu lato (s.l.) (90.7%), Anopheles funestus s.l. (6.9%), and Anopheles moucheti (2.4%). Three species of An. gambiae s.l. were identified including Anopheles gambiae sensu stricto (78.9%), Anopheles coluzzii (15.4%) and Anopheles arabiensis (5.7%). The overall sporozoite infection rate was 22.3% with a predominance of Plasmodium falciparum, followed by Plasmodium malariae and Plasmodium ovale. Anopheles aggressiveness rate was higher in households from rural area (1.1 bites/night) compared to that from urban area (0.8 ib/p/n). The overall entomological inoculation rate was 0.13 ib/p/n. This index was 0.17 ib/p/n and 0.092 ib/p/n in rural and in urban area, respectively, and was similar during the dry (0.18 ib/p/n) and rainy (0.14 ib/p/n) seasons. CONCLUSION: These findings highlight that malaria transmission remains high in rural and urban area in the south of Republic of Congo despite the ongoing control efforts, thereby indicating the need for more robust interventions.


Assuntos
Anopheles , Mordeduras e Picadas , Malária Falciparum , Malária , Plasmodium , Animais , Humanos , Congo/epidemiologia , Mosquitos Vetores , Plasmodium falciparum , Malária/prevenção & controle , Esporozoítos
3.
Pathogens ; 12(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242412

RESUMO

Polymorphisms in the genes encoding the merozoite surface proteins msp-1 and msp-2 are widely used markers for characterizing the genetic diversity of Plasmodium falciparum. This study aimed to compare the genetic diversity of circulating parasite strains in rural and urban settings in the Republic of Congo after the introduction of artemisinin-based combination therapy (ACT) in 2006. A cross-sectional survey was conducted from March to September 2021 in rural and urban areas close to Brazzaville, during which Plasmodium infection was detected using microscopy (and nested-PCR for submicroscopic infection). The genes coding for merozoite proteins-1 and -2 were genotyped by allele-specific nested PCR. Totals of 397 (72.4%) and 151 (27.6%) P. falciparum isolates were collected in rural and urban areas, respectively. The K1/msp-1 and FC27/msp-2 allelic families were predominant both in rural (39% and 64%, respectively) and urban (45.4% and 54.5% respectively) areas. The multiplicity of infection (MOI) was higher (p = 0.0006) in rural areas (2.9) compared to urban settings (2.4). The rainy season and the positive microscopic infection were associated with an increase in MOI. These findings reveal a higher P. falciparum genetic diversity and MOI in the rural setting of the Republic of Congo, which is influenced by the season and the participant clinical status.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA